

Feb 19-8:47 AM

Class QZ 3
1) Evaluate
$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 9} = \frac{3^2 - 5(3) + 6}{3^2 - 9} = \frac{9}{0}$$
 I.F.

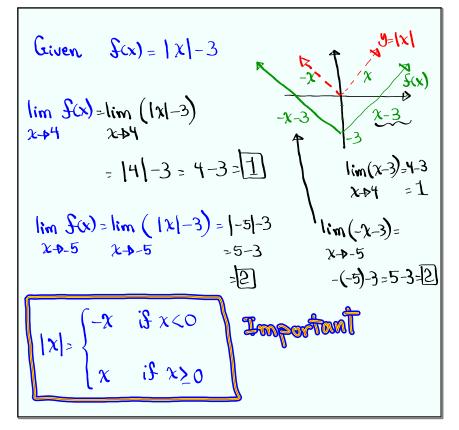
$$= \lim_{x \to 3} \frac{(x - 2)(x - 3)}{(x + 3)(x - 3)} = \lim_{x \to 3} \frac{x - 2}{x + 3} = \frac{3 - 2}{3 + 3} = \frac{1}{6}$$
2) Evaluate $\lim_{x \to 4} \frac{2x - 8}{\sqrt{x - 2}} = \frac{2(4) - 8}{\sqrt{4} - 2} = \frac{9}{0}$ I.F.

$$= \lim_{x \to 4} \frac{2(x - 4)(\sqrt{x + 2})}{\sqrt{x - 2}} = \lim_{x \to 4} \frac{2(x - 4)(\sqrt{x + 2})}{\sqrt{4} - 2} = \lim_{x \to 4} \frac{2(x - 4)(\sqrt{x + 2})}{x - 4} = \lim_{x \to 4} \frac{2(x - 4)(\sqrt{x + 2})}{x - 4} = \lim_{x \to 4} \frac{2(x - 4)(\sqrt{x + 2})}{x - 4} = \lim_{x \to 4} \frac{2(x - 4)(\sqrt{x + 2})}{x - 4} = \lim_{x \to 4} \frac{2(x - 4)(\sqrt{x + 2})}{x - 4} = \lim_{x \to 4} \frac{2(\sqrt{4} + 2)}{x - 4} = \lim_{x \to 4} \frac{2(\sqrt{4} + 2)}{x - 4} = \frac{1}{8}$$

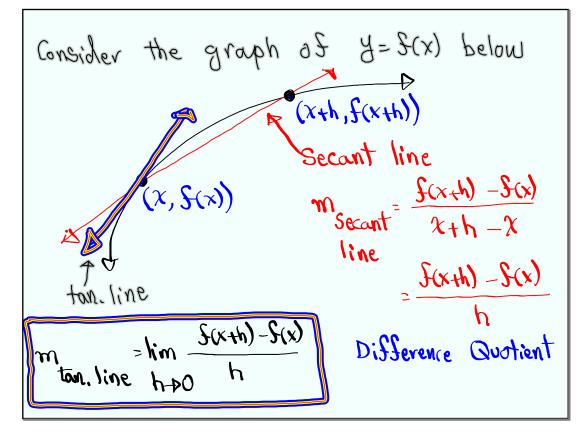
Evaluate
$$\lim_{x \to 0} \frac{1}{x+2} + \frac{1}{x=2} = \frac{1}{0+2} + \frac{1}{0-2}$$

 $x \to 0$ x 0
L(D) $(x+2)(x-2) = \frac{1}{2} - \frac{1}{2} = \frac{0}{0}$ I.F.
 $=\lim_{x \to 0} \frac{(x+2)(x-2) \cdot 1}{x+2} + (x+2)(x-2) \cdot \frac{1}{x-2}$
 $(x+2)(x-2) \cdot x$ $2x$
 $=\lim_{x \to 0} \frac{2x}{(x+2)(x-2) \cdot x} = \lim_{x \to 0} \frac{2x}{(x+2)(x-2) \cdot x}$
 $=\lim_{x \to 0} \frac{2}{(x+2)(x-2) \cdot x} = \lim_{x \to 0} \frac{2}{(x+2)(x-2) \cdot x}$
 $=\lim_{x \to 0} \frac{2}{(x+2)(x-2)} = \frac{1}{-4} = \frac{1}{2}$

Jun 18-8:20 AM



Jun 18-8:30 AM



Jun 18-8:35 AM

Sind slope of the tan. line to the graph
of
$$S(x) = \chi^{3} - 4\chi$$
.
 $f(-1) = (-1)^{3} - 4(-1)$
 $f(-1) = (-1)^{3} - 4(-1)$
 $f(-1) = 1$
 $f(-1) = 1$
 $f(-1, 3)$
 $f(-1, 3)$

Jun 18-8:50 AM

٦

ſ

Sind the slope of the tax. line to the
graph of
$$f(x)=Jx$$
.
 $m = \lim_{x \to 0} \frac{f(x)-f(x)}{h} = \lim_{x \to 0} \frac{Jx+h}{h} - Jx}{h}$
 $\tan_{x, h \to 0} = \lim_{h \to 0} \frac{Jx+h}{h} - Jx}{h}$
 $\lim_{x \to 0} \frac{f(x)h}{h} - \frac{f(x)h}{h} + \frac{f(x)}{h}}{h}$
 $= \lim_{h \to 0} \frac{f(x)h}{h} - \frac{f(x)h}{h} + \frac{f(x)}{h}}{h} = \lim_{h \to 0} \frac{f(x)h}{h} + \frac{f(x)h}{h}}{h}$
 $= \lim_{h \to 0} \frac{1}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{f(\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$
 $= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}} = \frac{1}{\sqrt{x+h}} + \frac{f(x)h}{\sqrt{x+h}} + \frac{f(x$

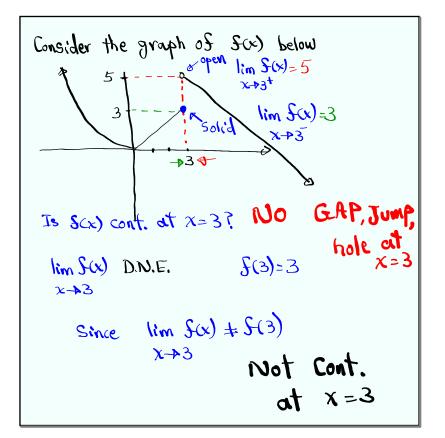
Jun 18-9:08 AM

Evoluate
$$\lim_{x \to 2} \frac{x_{+}4}{x_{-2}} = \frac{2 + 4}{2 - 2} = \frac{6}{0}$$
 undefined
If $x = 2.001$ $\frac{2.001 + 4}{2.001 - 2} = \frac{6.001}{.001} = 6001$
If $x = 2.00001$ $\frac{2.00001 + 4}{2.00001 - 2} = \frac{6.00001}{.00001}$
Hs $x \to 2^{+}$, $\lim_{x \to \infty} + \infty$ $\lim_{x \to 2^{-}} \frac{1}{.00001}$
As $x \to 2^{-}$, $\lim_{x \to 2^{-}} + \infty$ $\lim_{x \to 2^{-}} \frac{1}{.00000000}$
 $\lim_{x \to 2^{-}} \frac{2 + 4}{1 + 2}$
 $\frac{1}{2 + 2}$ $\frac{1}{2 + 2}$ $\frac{1}{2 + 2}$ $\frac{1}{2 + 2}$ $\frac{1}{2 + 2}$ $\frac{1}{2 + 2}$ $\frac{1}{2 + 2}$ $\frac{1}{2 + 2}$ $\frac{1}{2 + 2}$ $\frac{1}{2 + 2}$

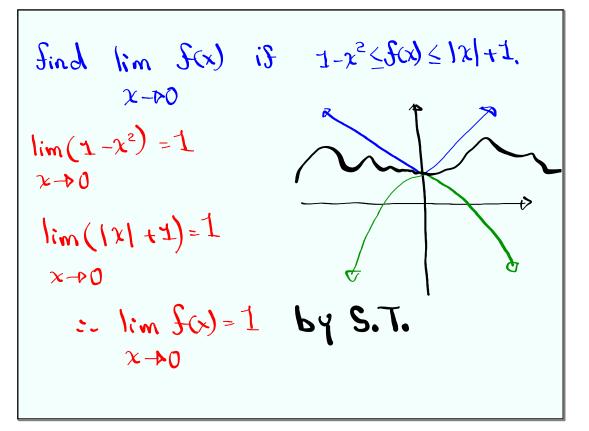
Γ

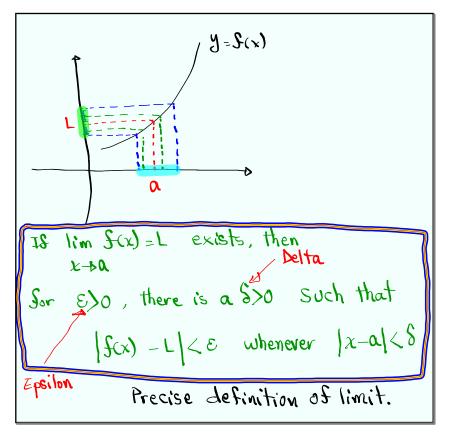
Jun 18-9:44 AM

Is
$$f(x) = x^3 - 5x + 1$$
 continuous at $x = -2$?
Method I: $f(x)$ is a polynomial
Function
Polynomial Functions are
Continuous $(-\infty, \infty)$
Yes.
Method II show $\lim_{x \to -2} f(-2)$
 $\lim_{x \to -2} f(-2) + 1$
 $\lim_{x \to -2} f(-2) + 1 = -8 + 10 + 1 = -3$
 $f(-2) = (-2)^{-5}(-2) + 1 = -8 + 10 + 1 = -3$



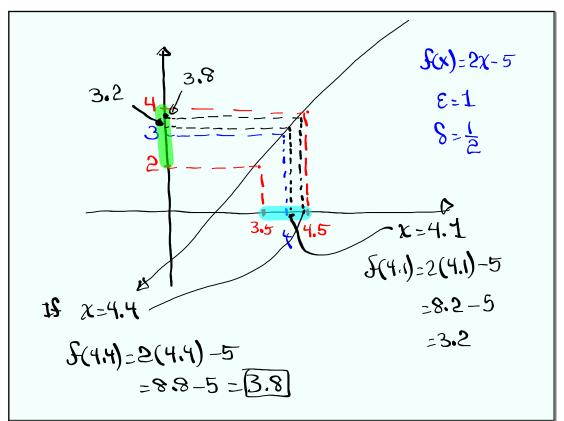
Jun 18-9:56 AM





Jun 18-10:08 AM

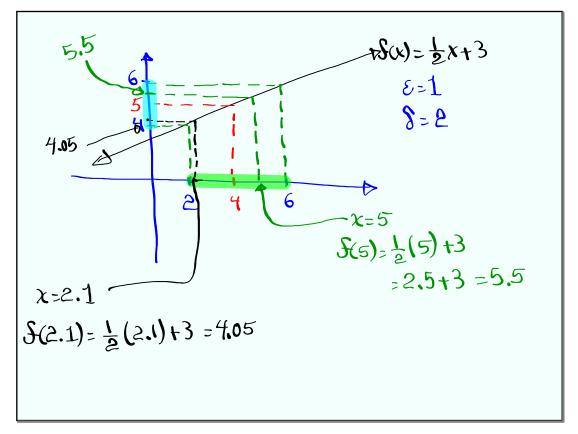
Prove
$$\lim_{x \to H} (2x - 5) = 3$$
 using ε and δ .
 $x \to H$
 $f(x) = 2x - 5$ i) Verify the limit.
 $d = 4$ $\lim_{x \to H} (2x - 5) = 2(4) - 5 = 8 - 5 = 3\sqrt{2} + 44$
 $1 = 3$ 2) $|f(x) - 1| < \varepsilon$ whenever $|x - a| < 5$
 $|2x - 5 - 3| < \varepsilon$ whenever $|x - a| < 5$
 $|2x - 5 - 3| < \varepsilon$ whenever $|x - 4| < 5$
 $|2x - 8| < \varepsilon$
 $|2(x - 4)| < \varepsilon$
 $|2(x - 4)| < \varepsilon$
 $|2||x - 4| < \varepsilon$
 $2||x - 4| < \varepsilon$
 $|2||x - 4| < \varepsilon$



Jun 18-10:19 AM

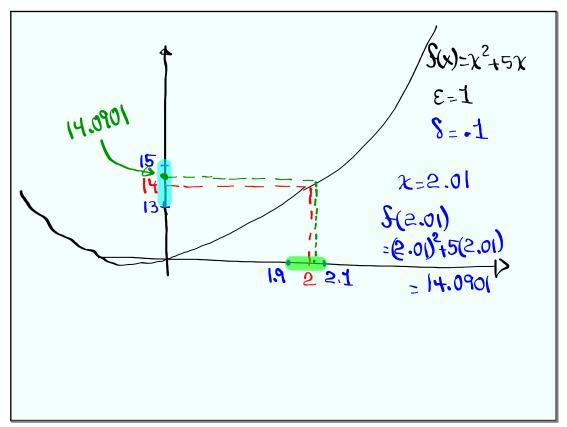
Prove
$$\lim \left(\frac{1}{2}x+3\right) = 5$$
 Using \mathcal{E} and \mathcal{E}
 $x \rightarrow 4$
definition.
 $f(x) = \frac{1}{2}x+3$ i) Verify the limit.
 $a = 4$
 $\lim \left(\frac{1}{2}x+3\right) = \frac{1}{2}(4)+3 = 2+3 = 5$
 $1 = 5$
 $x \rightarrow 4$
 $1 = 5$
 $x \rightarrow 4$
 $1 = 5$
 $2)$ $|f(x) - 1| < \varepsilon$
 $|f(x - 4)| < \varepsilon$
 $|f(x - 4)|$

Jun 18-10:24 AM



Jun 18-10:34 AM

Prove
$$\lim_{x \to 2} (x^2 + 5x) = 14$$
 Using $\varepsilon \notin S$ def.
 $x \to 2$
 $\int (x) = x^2 + 5x$ 1) $\lim_{x \to 2} (x^2 + 5x) = 2^2 + 5(2)$
 $a = 2$ $x \to 2$ $= 4 + 10$
 $= 14 \sqrt{2}$
 $L = 14 x$) $\int (5x) - L < \varepsilon$ whenever $|x - a| < S$
 $|x^2 + 5x - 14| < \varepsilon$ whenever $|x - 2| < S$
 $|x + 7| (x - 2)| < \varepsilon$ whenever $|x - 2| < S$
 $|x + 7| (x - 2)| < \varepsilon$ whenever $|x - 2| < S$
 $|x + 7| |x - 2| < \varepsilon$
Bound Keep
15 $|x + 7| < C$, then $C |x - 2| < \varepsilon$, $|x - 2| < \frac{\varepsilon}{C}$
14 is Common (Sor now) for $S \le 1$
 $|x - 2| < 1$
 $-1 < x - 2 < 1$
 $S = \min\{1, \frac{\varepsilon}{10}\}$ add 7
 $s < x + 7 < 10$
 $\varepsilon = 1 \rightarrow S = \min\{1, \frac{10}{10}\} = 1$
 $\varepsilon = 1 \rightarrow S = \min\{1, \frac{10}{10}\} = 1$



Jun 18-10:53 AM